Osmotically Regulated Two-Compartment Asymmetric Membrane Capsules for Simultaneous Controlled Release of Anti-Hypertensive Drugs
نویسندگان
چکیده
In the present study, asymmetric membrane capsules (AMCs) with two compartments were successfully developed for simultaneous delivery of two poorly water-soluble drugs, Atenolol and Amlodipine Besylate, by using solubility modulation approach. Scanning electron microscopy (SEM) before dissolution showed presence of outer dense region and inner porous region for the prepared asymmetric membrane and the pore size increased after dissolution for both outer and inner layer. Diffuse reflectance spectroscopy (DRS) showed no incompatibility between the drug(s) and the excipients used in the study. The developed system was able to control the release of ATN and AMB by increasing the solubility through buffering agents of different strengths (0.25N to 1.0N). As the level of buffering agent was increased, the solubility of drugs also increased inside the asymmetric membrane capsule. The developed system was independent of the agitation intensity of the dissolution fluid but was dependent on the polymer diffusibility and osmotic pressure of the media, which clearly stated that osmotic pumping was the primary mechanism of drug(s) release from AMCs. The results of in-vitro demonstration of effect of membrane thickness on dissolution fluid entering AMCs showed that as the membrane thickness increased the volume of dissolution fluid entering into AMC decreased. The release kinetic studies of different formulations of AMCs showed that formulation code six, which consists of the highest amount of osmotic agents and optimum amount of buffering agents, was the best formulation, and it followed zero order release kinetics (r(2)=0.9990 for ATN and r(2)=0.9988 for AMB).
منابع مشابه
Development of Osmotically Controlled Mucoadhesive Cup-Core (OCMC) Tablet for The Anti-Inflammatory Activity
The aim of the present study was to prepare and evaluate an osmotically controlled mucoadhesive cup-core (OCMC) containing aceclofenac. A special technique was used while preparing an OCMC. Stability of OCMC was determined in natural human saliva, and it was found that both pH and device are stable in human saliva. OCMC was evaluated by weight uniformity, thickness, hardness, friability, swelli...
متن کاملDevelopment of Osmotically Controlled Mucoadhesive Cup-Core (OCMC) Tablet for The Anti-Inflammatory Activity
The aim of the present study was to prepare and evaluate an osmotically controlled mucoadhesive cup-core (OCMC) containing aceclofenac. A special technique was used while preparing an OCMC. Stability of OCMC was determined in natural human saliva, and it was found that both pH and device are stable in human saliva. OCMC was evaluated by weight uniformity, thickness, hardness, friability, swelli...
متن کاملDevelopment and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene
The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin) exhibited optimum sol...
متن کاملAsymmetric Membrane Osmotic Capsules for Terbutaline Sulphate
The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an ...
متن کاملAsymmetric Membrane Capsules for Extended Delivery of the Weakly Basic Drug Carvedilol
The objective of this study was to demonstrate that asymmetric membrane capsules can be used to deliver a poorly water soluble drug with a pH dependent solubility, such as carvedilol, for extended periods of time by modulating solubility with acid. In this study, the effect of the concentration of pH regulating agent and osmotic agents on the release rate of the active material was investigated...
متن کامل